

Абрамов Юрий Николаевич

ОБОСНОВАНИЕ ПАРАМЕТРОВ РОТОРА БОТВОДРОБИТЕЛЯ С ШАРНИРНЫМИ РЕЖУЩИМИ ЭЛЕМЕНТАМИ

Специальность 05.20.01 – Технологии и средства механизации сельского хозяйства

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата технических наук

Работа выполнена в федеральном государственном бюджетном образовательном учреждении высшего образования «Рязанский государственный агротехнологический университет имени П.А. Костычева»

Научный руководитель: доктор технических наук, профессор

Угланов Михаил Борисович

Официальные оппоненты: Калимуллин Марат Назипович,

доктор технических наук, доцент, ФГБОУ ВО «Казанский государственный аграрный университет», профессор кафедры

эксплуатации и ремонта машин

Камалетдинов Рим Рашитович,

доктор технических наук, доцент, ФГБОУ ВО «Башкирский государственный аграрный университет», профессор кафедры строительно-дорожных, коммунальных и

сельскохозяйственных машин

Ведущая организация: Федеральное государственное бюджетное

научное учреждение «Всероссийский научноисследовательский институт картофельного хозяйства имени А.Г. Лорха» (ФГБНУ

ВНИИКХ им. А.Г.Лорха)

Защита состоится «25» декабря 2019 г. в 12:00 на заседании диссертационного совета Д 220.057.03, созданного на базе федерального государственного бюджетного образовательного учреждения высшего образования «Рязанский государственный агротехнологический университет имени П.А. Костычева» по адресу: 390044, г. Рязань, ул. Костычева, д.1, зал заседаний диссертационного совета.

С диссертацией и авторефератом можно ознакомиться в библиотеке ФГБОУ ВО РГАТУ, на сайте: www.rgatu.ru, с авторефератом — на сайте Высшей аттестационной комиссии при Министерстве науки и высшего образования Российской Федерации www.vak.minobrnauki.gov.ru

Автореферат разослан «___»_____19 г. Ученый секретарь диссертационного совета доктор технических наук, доцент

Юхин И.А.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования. Качество уборки урожая во многом зависит от используемых технологий и применяемой сельскохозяйственной техники. Картофель является одной из важнейших сельскохозяйственных культур, возделываемых в Российской Федерации. Его используют для продовольственных, технических и кормовых целей. Картофель распространен в Российской Федерации повсеместно, в том числе и Нечерноземной зоне.

В связи с сокращением производства картофелеуборочной техники в стране резко сократились площади под посадку картофеля.

При уборке картофеля картофелеуборочными машинами и комбайнами производительность их в значительной степени зависит от состояния картофельной ботвы. При сильно развитой и полеглой ботве производительность уборочных машин резко падает из-за забивания рабочих органов, а в отдельных случаях их работа вообще невозможна.

Для облегчения работы картофелеуборочных машин и повышения количества и качества урожая картофельную ботву перед уборкой необходимо удалять. Появление первых отечественных машин роторного типа, таких как КИР-1.5, УБД-3, БД-4 дало возможность механизировать процесс уборки картофельной ботвы.

В процессе эксплуатации замечено, что роторные машины обладают рядом недостатков, вызванных несовершенством конструкции ротора, его кинематических режимов, недостаточной уравновешенностью и надежностью.

Поэтому исследования, направленные на совершенствование конструкции машин роторного типа, представляются весьма важными и актуальными.

Степень разработанности темы. В настоящее время существует острая необходимость выпуска простой и надежной уборочной техники и совершенствования конструкций рабочих органов и технологии уборки урожая для увеличения производительности труда и снижения себестоимости картофеля. Значительный вклад в разработку этих машин внесли: академик Горячкин В.П., профессора: Калимуллин М.Н., Камалетдинов Р.Р., Колчин Н.Н., Мацепуро М.Е., Петров Г.Д., Пшеченков К.А., Старовойтов В.И., Угланов М.Б., Бышов Н.В., Успенский И.А., Борычев С.Н. и др.

Исследование выполнено по планам НИОКР по теме «Совершенствование интенсивных технологий и технических средств возделывания, уборки и послеуборочной обработки сельскохозяйственных культур» в соответствии с Постановлением правительства Российской

Федерации от 14 июня 2007 г. № 444 «О государственной программе развития сельского хозяйства на 2008-2012 гг.», предусматривающем «...ускоренный переход использованию новых высокопроизводительных сельскохозяйственных ресурсосберегающих машин технологий», соответствии с планом НИР на 2016-2020 г.г. по теме 3 «Совершенствование технологий, средств механизации, электрификации и технического сервиса в сельскохозяйственном производстве» и программой по основным научным Рязанского направлениям государственного агротехнологического университета имени П.А. Костычева.

Цель исследования — обоснование параметров ротора ботводробителя с шарнирными ножами различной длины.

Объект и предмет исследования. Объектом исследований является технология удаления ботвы ротором ботводробителя с шарнирными ножами переменной длины.

Предметом исследований являются закономерности взаимодействия шарнирных ножей ботводробителя с картофельной ботвой.

Методология и методы исследования. Для достижения поставленной цели проведены теоретические И экспериментальные исследования, лабораторно-полевые испытания модернизированного 4-x рядного ботводробителя. При выполнении теоретических исследований использованы методы математического анализа, элементы классической механики, при выполнении экспериментальной части исследования в лабораторно-полевых условиях применены современные методы.

Научная новизна работы заключается в:

- разработке параметров научно-обоснованной модели ротора повышающих эффективность взаимодействия шарнирных ножей с картофельной ботвой;
- предложены аналитические выражения для определения параметров шарнирных ножей различной длины ботводробителя.

Основные положения, выносимые на защиту:

- конструкция и параметры ротора с шарнирными режущими элементами;
- научное обоснование взаимодействия шарнирных ножей ботводробителя с картофельной ботвой;
- результаты лабораторно-полевых исследований модернизированного ботводробителя;

 технико-экономическая эффективность ботводробителя с шарнирными режущими элементами.

Теоретическая значимость работы. Предложена методика расчета шарнирных элементов ботводробителя в поле центробежных сил.

Практическая значимость работы. состоит в том, что использование модернизированного ротора ботводробителя с переменным диаметром и шарнирными режущими элементами позволило улучшить качество дробления ботвы и уборку ботвы в междурядьях.

Рекомендации по обоснованию основных геометрических и кинематических параметров модернизированного ротора ботводробителя приняты в ООО «Авангард» Рязанского района Рязанской области.

Реализация результатов исследования. Модернизированный ботводробитель БД-4М прошел хозяйственные испытания в ООО «Авангард», СПК «Стенькино» Рязанского района. Результаты исследований переданы в Производственное Объединение ЧУП «ТЭНС-ТРАНС» г. Минск для внедрения в производство и используются в учебном процессе ФГБОУ ВО РГАТУ.

Достоверность результатов исследований. Подтверждена сходимостью результатов теоретических и экспериментальных исследований (расхождение менее 5%) и апробацией в производственных условиях.

Апробация результатов исследований. Основные положения диссертационной работы доложены и одобрены на Национальных научно-практических конференциях ФГБОУ ВО РГАТУ «Приоритетные направления научно-технологического развития агропромышленного комплекса России» (2018 г.) и «Тенденции инженерно-технологического развития агропромышленного комплекса» (2019 г.).

Личное участие соискателя в получении результатов состоит в формулировке цели и задач исследований, проведении теоретических и экспериментальных исследований, написании научных статей, внедрении полученных результатов в производство.

Публикации. Основные положения диссертации опубликованы в 18 научных работах, в том числе 4 изданиях, рекомендованных ВАК. Получено 3 патента РФ на полезную модель.

Структура и объем работы. Диссертация состоит из введения, 5 глав, заключения, списка литературы из 162 наименований и 17 страниц приложений.

Работа изложена на 132 страницах машинописного текста, иллюстрирована 24 рисунками, содержит 16 таблиц.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность решаемой проблемы, приведены основные положения, выносимые на защиту, показана научная новизна, практическая ценность работы и результаты ее реализации.

В первой главе «Состояние вопроса о машинах для уборки картофельной ботвы» дается анализ рабочих органов ботвоуборочных машин по удалению картофельной ботвы и растительных остатков.

картофелеуборочными уборке машинами комбайнами И производительность их в значительной степени зависит ОТ состояния При картофельной ботвы. сильно развитой И полёглой производительность уборочных машин резко падает из-за забивания рабочих органов, а в отдельных случаях их работа вообще невозможна.

Работы по исследованию и созданию новых рабочих органов по удалению картофельной ботвы машинами проводились в ВИСХОМе, ВИМе, НИИКХ, ГСКБ ПО «Рязсельмаш», РГАТУ г. Рязань и др. Проведенный анализ показал, что существует большое разнообразие всевозможных конструкций рабочих органов и методов по отделению картофельной ботвы от почвы и клубней, но ни одна из них не обеспечивает высокое качество отделения ботвы. К настоящему времени при комбайновой уборке картофеля определилось два направления в удалении ботвы: отделение ботвы от клубней в картофелеуборочных комбайнах, предуборочное дробление ботвы.

В конструкциях картофелеуборочных комбайнов имеются рабочие органы по удалению картофельной ботвы и растительных остатков. Однако, они работают неудовлетворительно (рис. 1).

Известны два способа предуборочного удаления ботвы: механический и химический.

Механический способ - это резание, дробление, теребление. Химический способ основан на опрыскивании ботвы химическими препаратами — десикантами, и они не решают проблему.

На основании проведенного анализа конструкций рабочих органов отечественных и зарубежных машин нами поставлена цель исследований и сформулированы задачи исследований:

- обобщить результаты научных исследований способов и конструкций ботвоуборочных рабочих органов;
- теоретически обосновать параметры ротора ботводробителя с шарнирными ножами различной длины для надежного среза растений;

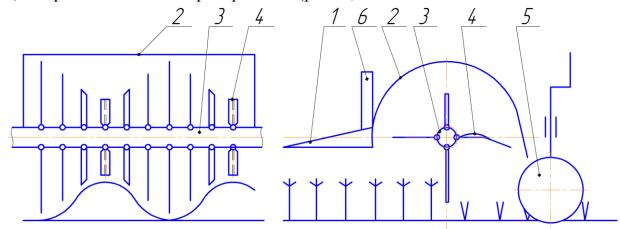

- провести производственные испытания модернизированного ботводробителя в полевых условиях;
- определить технико-экономическую эффективность применения модернизированного ботводробителя с шарнирными режущими элементами.

Рисунок 1 - Систематизация современных проблем, связанных с ботвоудалением

Во второй главе «Теоретические исследования ротора ботводробителя с шарнирными режущими элементами» приведены результаты теоретического исследования динамики ротора с шарнирными ножами в поле центробежных сил, определены параметры ножей и предложена конструктивно-технологическая схема модернизированного ботводробителя.

В работе разработан и предложен модернизированный ботводробитель БД-4М, с переменным диаметром резания (рис. 2).

1 – привод; 2 – кожух; 3 – ротор с шарнирными ножами; 4 –шарнирный нож; 5 – опорное колесо; 6 – навесное устройство.

Рисунок 2 — Схема четырехрядного ботводробителя

Патенты на полезные модели № 160763, № 162404 и № 186794.

Такая конструкция использует копирование профиля картофельных грядок, дробление ботвы в междурядьях и дает возможность максимального удаления ботвы и растительных остатков и сброса измельченной ботвы в междурядье.

С целью согласованной работы вращающегося ротора и колеблющихся ножей рассмотрим динамику шарнирных элементов в поле центробежных сил. На основе этого определим оптимальные параметры ножей и ротора. Схема ротора представлена на рисунке 3.

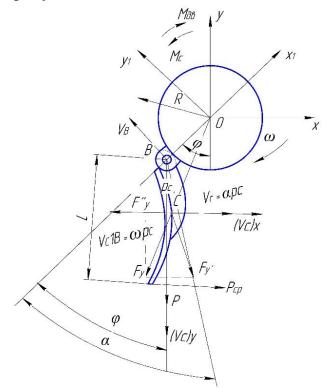


Рисунок 3 – Схема ротора с режущими шарнирными ножами

Движение системы, состоящей из ротора и режущего элемента, описывалось дифференциальным уравнением по методу Лагранжа. Выберем неподвижную систему координат XOY, проходящую через центр вращения ротора и подвижную систему координат X_1OY_1 , вращающуюся вместе с ротором и проходящую через центр вращения ротора и ось подвеса режущего элемента.

В начале работы режущий элемент ротора под действием центробежной силы располагается радиально. В момент встречи с картофельной ботвой он со стороны ботвы получает внешний импульсивный момент среза, под действием которого режущий элемент начинает отклоняться от радиального положения,

достигает максимального угла отклонения α_{\max} , после этого движется обратно.

С целью получения устойчивой работы ротора необходимо установить связь между вращением ротора, колебательным движением режущих элементов и импульсивным моментом среза. На основе анализа этой связи выявить оптимальный кинематический режим работы ротора и рациональные его параметры.

При составлении уравнений применялись обобщенные координаты системы углы отклонения φ и α , где φ – угол отклонения ротора от вертикали, α – угол отклонения режущего элемента от радиального положения. В этом случае лагранжевы дифференциальные уравнения движения могут быть записаны в общем виде.

$$\frac{d(\partial T)}{dt(\partial \dot{\phi})} - \frac{\partial T}{\partial \phi} = Q_1, \tag{1}$$

$$\frac{d(\partial T)}{dt(\partial \dot{\alpha})} - \frac{\partial T}{\partial \alpha} = Q_2, \tag{2}$$

где T — кинетическая энергия системы;

 Q_1 и Q_2 – обобщенные силы;

 φ и α – обобщенные координаты.

Определив кинетическую энергию T системы и представив эту энергию как функцию углов поворота φ и α и их производных, и произведя вычисление составляющих уравнений (1) и (2), получим дифференциальное уравнение второго порядка:

$$J_B \ddot{\alpha} + mR \rho_c \omega_\delta^2 \sin \alpha = P_{cp} l, \qquad (3)$$

где J_{B} – момент инерции ножа относительно подвеса;

т - масса ножа;

 ρ_{c} - расстояние от точки подвеса ножа до его центра масс;

R - радиус барабана;

 $\omega_{\text{б}}$ - угловая скорость барабана;

 P_{cp} - сила среза, действующая на нож;

L - длина ножа.

В работе рассмотрено три варианта движения ножа:

1) $\alpha_0 \leq \alpha \leq \alpha_{cp}$ — отклонение ножа во время срезания ботвы, где α_{cp} — угол, на который отклоняется нож от радиального направления за время срезания ботвы t_{cp} .

- 2) $\alpha_{cp} \leq \alpha \leq \alpha_{ocm}$ отклонение ножа по инерции после срезания ботвы до момента времени t_{ocm} , когда его угловая скорость станет равной нулю ($\dot{\alpha}=0$).
- 3) $\alpha_{возвр.} \leq \alpha \leq \alpha_{ocm}$ отклонение ножа к радиальному положению под действием центробежных сил, где $\alpha_{возвр.}$ угол отклонения от угла остановки до радиального положения, в которое вернется нож за один оборот барабана.

Рассмотрев первый этап движения и проведя преобразование, в работе был найден первый угол отклонения ножа от радиального положения.

$$\alpha_{cp} = \alpha_0 + \frac{au_1(1 + Av_0)^2 + u_2(Aa + v_0)^2}{a(1 - Av_0)^2 + (Aa + v_0)^2},$$
(4)

где α_0 – угол отклонения;

 a, u_1, u_2, v_0, A определяются теоретически.

Рассмотрим второй участок движения ножа от $\alpha=\alpha_{cp}$ до $\alpha=\alpha_{ocm}$,

Где α_{ocm} – угол, при повороте на который нож останавливается.

Найдем время движения ножа на этом участке и, проведя преобразования, найдем угол остановки.

$$x_{ocm} = \frac{x_2 B^2 + x_1}{1 + R^2},\tag{5}$$

Так как $x_{ocm} = \alpha_{ocm} - \alpha_{cp}$, то:

$$\alpha_{ocm} = \alpha_{cp} + \frac{x_2 B^2 + x_1}{1 + B^2},\tag{6}$$

где α_{cp}, x_2, x_1, B определяются теоретически.

Полный угол отклонения ножа в момент срезания ботвы от радиального положения до полной остановки определяется как $\psi = \alpha_{cp} + \alpha_{ocm}$, т.е.

$$\psi = 2\alpha_{cp} + \frac{x_2 B^2 + x_1}{1 + B^2} \tag{7}$$

На основе разработанной модели определены углы отклонения ножей при срезании картофельной ботвы различной массы от радиального положения для каждого вида ножей и установлено их предельное отклонение не более допустимого 30° (см. таблицы 2.3, 2.4, 2.5 в диссертации).

Определение периода колебаний ножей.

При воздействии силы среза на нож последний отклоняется на угол α и продолжает колебаться назад и вперед с последующим затуханием.

Совместно с профессором М.Б. Углановым определен период колебаний ножа от действия силы среза. Период колебаний определяется как:

$$T = 4 \frac{I_e}{mR\rho_c \omega^2} \int_0^{\frac{\pi}{2}} V \frac{d\psi}{1 + \sin^2 \frac{\alpha_{\text{max}}}{2} \cdot \sin \psi} = \frac{4}{e} K \left(\frac{\alpha_{\text{max}}}{2}\right)$$
(8)

Из формулы 8 видно, что период колебания ножа в поле центробежных сил зависит от амплитуды колебания, т.е. величины максимального угла отклонения от радиального положения. При анализе зависимости периода колебания от амплитуды можно увидеть, что период практически до угла $\alpha = 30^{\circ}$ является постоянным. Поэтому данный угол может быть принят как предельный, дальше которого он не должен отклоняться. Колебания режущего элемента в диапазоне $-30^{\circ} < \alpha < 30^{\circ}$ будут практически гармоническим.

Обоснование параметров режущих ножей

Определим период колебаний ножей. Как известно, при воздействии силы среза на нож последний отклоняется на угол α и продолжает колебаться назад и вперед с последующим затуханием. Рассмотрим движение ножа после взаимодействия с ростками ботвы картофеля после соударения. Нож отклоняется от нейтрального положения и совершает свободные колебания под действием центробежной силы согласно уравнения:

$$J_{R}\ddot{\alpha} + mR\rho_{c}\omega_{0}^{2}\sin\alpha = 0 \tag{9}$$

Учитывая, что угол отклонения ножа от радиального положения незначителен, допустим, что $\sin \alpha = \alpha$, тогда выражение (9) можно записать в виде

$$J_{R}\ddot{\alpha} + mR\rho_{c}\omega_{\delta}^{2}\alpha = 0 \tag{10}$$

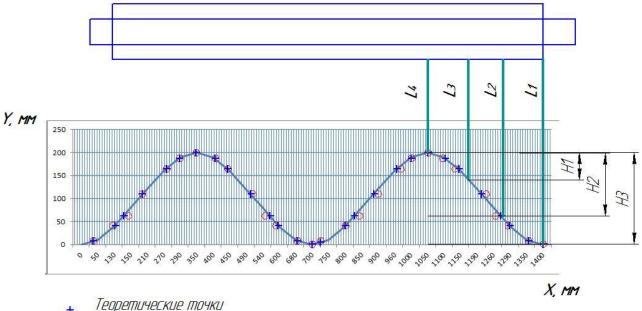
Период колебаний ножа в этом случае будет определяться выражением

$$T = \frac{2\pi}{\sqrt{\frac{mR\rho_c\omega_o^2}{J_R}}} \tag{11}$$

Из формулы (11) видно, что период колебания ножа в поле центробежных сил зависит от параметров ножа и частоты вращения барабана ботводробителя. Построим зависимость периода колебания от частоты вращения барабана и параметров ножей. Графически это будет иметь вид (рис 4.).

1, 2, 3, 4 –параметры ножей

Рисунок 4 - Зависимость периода колебаний от угловой скорости барабана и параметров ножа


Анализ графика зависимости показывает, что период колебаний в большей степени зависит от величины центробежных сил, действующих на нож, то есть от частоты вращения барабана ботводробителя. Также на период колебаний влияют параметры ножа, особенно его длина, и в меньшей степени – масса.

Для определения длин ножей за основу возьмем нож L_4 = 175 мм от серийной машины КИР-1,5. Для этого мы опустим ротор до тех пор, пока средний короткий нож L_4 не коснется верхней точки профиля грядки.

Следующий нож L_3 будет длиннее L_4 на величину H_1 и он также коснется грядки, последующие ножи L_2 и L_1 будут длиннее соответственно на величину H_2 и H_3 . Величины H_1 , H_2 и H_3 . найдем из схемы рисунка 5. Они будут: H_1 = 45мм, H_2 =135мм и H_3 200мм.

Таким образом, определим длину всех ножей по формуле:

$$L = L_4 + H_{\rm i},$$
 (12)
где $L_4 = 175$ мм; $L_3 = 175 + 45 = 220$ мм; $L_2 = 175 + 135 = 310$ мм; $L_1 = 175 + 200 = 375$ мм.

- + Teopenia leckae mo ika
 - Практические точки
 Рисунок 5 Схема для определения длины переменных ножей

Определим массы ножей. За основу центрального ножа взят нож с серийной машины КИР-1,5 массой $m_4 = 1,468$ кг, который нагружен наиболее полно. Он срезает несколько стеблей на вершине грядки, поэтому остальные ножи взяты меньшей массы, то есть $m_1 = 1,02$ кг, $m_2 = 0,663$ кг, $m_3 = 0,626$ кг, $m_4 = 1,468$ кг.

В третьей главе «Лабораторные исследования ротора ботводробителя с шарнирными режущими элементами» представлены программа и методика лабораторных исследований.

В программу лабораторных исследований вошли вопросы:

- определение удельной работы среза;
- определение усилия среза единичного стебля;
- определение линейной скорости ножа при безподпорном срезе единичного стебля;
- исследование относительного движения ножа в поле центробежных сил.
- экспериментальное определение основных параметров ножей модернизированного ботводробителя.

В четвертой главе «Полевые исследования модернизированного ротора ботводробителя с шарнирными режущими элементами» в качестве объекта исследования взят модернизированный ботводробитель БД - 4М.

В программу полевых исследований вошло:

- 1. Проведение технической экспертизы экспериментального и серийного ботводробителя БД-4М.
 - 2. Снятие характеристики участка испытаний.
- 3. Проведение лабораторно-полевых исследований с определением влажности почвы, исследование профиля грядки.
- 4. Проведение испытаний модернизированного ботводробителя в хозяйственных условиях.

В результате теоретических и лабораторных исследований нами были разработаны, изготовлены и установлены экспериментальные ножи переменной длины, которые были установлены на модернизированном ботводробителе БД – 4М (рис. 6).

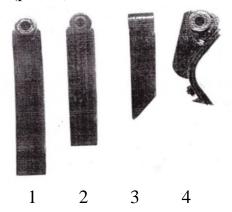


Рисунок 6 – Экспериментальные ножи

Ножи 1,2,3 имеют плоскую форму, предназначены для дробления картофельной ботвы и растительных остатков в междурядьях обрабатываемых грядок.

Каждому такому ножу соответствует аналогичный нож, расположенный под углом 180° к первому.

Нож 4 лопаткообразный в процессе работы проходит над картофельным гнездом и обеспечивает срезание ботвы над клубневым гнездом. Все ножи изготавливаются из полосовой стали марки Сталь 65Г.

Таким образом, использование модернизированного ротора с переменным диаметром резания и шарнирными режущими элементами позволяет улучшить их производительность и качество дробления и уборку ботвы в междурядьях картофельных грядок и значительно повысить эффективность комбайновой уборки.

В результате проведенной технической экспертизы получены данные, которые приведены в таблице 1.

Значение одного из главных параметров ножа — длины, мы определяли из экспериментальных исследований профиля картофельной грядки, о чем было сказано выше.

Таблица 1 – Основные данные и характеристики

Наименование	Единица	Серийный	Экспериментальный
	измерения	БД- 4	БД – 4М
1	2	3	4
Тип		Навесной	Навесной
Производительность за час чистой работы	га/ч	0,650,70	0,720,76
Рабочая скорость движения агрегата	км/ч	5,87,0	6,59,0
Ширина захвата	M	2,8	2.8
Высота среза	СМ	010	010
Транспортная скорость	км/ч	16	16
Масса машины:			
- с зап. частями и инструментом;	КГ	910	935
- без зап. частей и инструмента.	КГ	880	900
Габаритные размеры			
Ширина	MM	3172	3172
Длина		322	322
Высота		1250	1250
Дорожный просвет	MM	650	650
Характеристика рабочих органов			
а) шарнирные ножи переменой длины			
Агрегатируется с тракторами		MT3-80	MT3-80
Привод		от ВОМ	от ВОМ

Перед началом испытаний была снята характеристика участка и характеристика культуры картофеля. Результаты замеров профиля грядок до прохода установки сведены в таблицу 2.

Таблица 2 – Характеристика культуры картофеля

Наименование показателей	Значение показателей
Дата снятия характеристики	20.08.2013
Сорт картофеля	Сантэ
Способ посадки	Рядовый
Ширина междурядий, см	70
Биологический урожай ботвы, ц/га	220
Фактический урожай клубней, ц/га	181
Влажность ботвы, %	84,5
Высота гребней, см	19,5
Количество кустов, тыс. шт/га	36
Характеристика гнезда:	
Ширина гнездо, см	15,1
Глубина залегания нижнего клубня, см	15,5

Испытания проводились в сравнении с серийным ботводробителем. За период испытаний было убрано 16,2 га. Модернизированный ботводробитель при работе в поле показан на рисунке 7. Во время проведения полевых испытаний была проведена агротехническая и эксплуатационная оценка работы. Результаты испытаний приведены в таблице 3.

Рисунок 7 - Модернизированный ботводробитель БД - 4М

Таблица 3 - Результаты испытаний

Наименование показателей	Серийный ботводробитель	Модернизированный ботводробитель	
Культура	Картофель		
Сорт	Сантэ		
Урожайность, ц/га	181	181	
Скорость движения агрегата, км/ч	7,0	8,5	
Высота среза, см	8,0	8,0	
Полнота уборки, %			
Срезано	70,5	81,5	
Оставлено несрезанной ботвы	29,5	18,5	
Состав измельченной массы по фракциям, %			
а) частиц до 2-х см	30,2	38,6	
б) частиц свыше 2-х см	69,8	61,4	

В пятой главе «Технико-экономические показатели применения модернизированного ботводробителя БД-4М» приведены результаты технико-экономического расчета эффективности применения модернизированного ботводробителя БД-4М при удалении картофельной

ботвы в междурядьях картофельного поля. Установлено, что годовой экономический эффект от внедрения четырехрядного ботводробителя БД-4М 19195 руб. при годовой нагрузке машины Модернизированный ботводробитель ПО всем технико-экономическим показателям превосходит существующие ботводробители. Четырехрядный ботводробитель БД-4М можно эффективно использовать не только в КФХ, но и в крупных картофелеводческих хозяйствах АПК.

Заключение

- 1. На основании исследования научно-производственного опыта механического способа предуборочного удаления ботвы, установлено, что все рекомендуемые параметры ботвосрезающих рабочих органов ботводробителей в основном выбирают из конструктивных соображений не учитывая при этом величины длин резания ротором ботводробителей, расстановку режущих элементов по валу и некоторые другие их параметры, которые на наш взгляд обеспечивали бы копирование картофельных грядок и давали бы возможность максимального удаления ботвы и растительных остатков в междурядьях. Учет данных параметров ботводробителей позволит улучшить срез ботвы в междурядьях и повысить качество ее дробления и технико-эксплуатационные показатели картофелеуборочных машин и комбайнов.
- 2. На основе анализа конструкций роторных ботвоуборочных машин нами предложен новый вариант ротора с шарнирными ножами и переменным диаметром резания. Такая конструкция обеспечивает копирование картофельных грядок и дает возможность максимального удаления ботвы и растительных остатков.
- 3. Учитывая дифференциальные уравнения, связывающие динамику шарнирных режущих элементов ботводробителя с эффективным их функционированием были обоснованы рациональные параметры ротора ботводробителя с учетом устойчивой работы системы и качественного выполнения технологического процесса. Графоаналитическим методом с учетом профиля грядок и учитывая «охват» ножей поверхности грядки обоснованы следующие параметры ротора ботводробителя:
- переменная длина 4 ножей, которая равна: L_1 = 375 мм эти ножи срезают ботву в междурядьях, L_2 = 310 мм, L_3 = 220 мм и L_4 = 175 мм эти ножи срезают ботву на вершине грядки;
 - масса ножей, равная 0,663, 0,826, 1,02 и 1,468 кг соответственно.

- 4. В результате проведенного лабораторного исследования процесса динамического среза картофельной ботвы модернизированным ботводробителем установлены: среднее усилие среза единичного стебля P=10,6 кг при влажности 84,5 % и необходимая линейная скорость режущего элемента ботводробителя для осуществления бесподпорного среза $V_{CP}=36-38$ м/с.
- 5. Сравнительное полевое испытание модернизированного ротора ботводробителя, параметры которого выбраны на основе разработанных теоретических предпосылок, показали преимущества его как по полноте уборки, так и по потребной мощности холостого и рабочего ходов:
- полнота уборки картофельной ботвы составляет у модернизированного 81,5%, а у серийного 70,5%, что на 11% меньше;
- несрезанной ботвы оставлено 18,5%, а у серийного 29,5%, что на 11% больше;
- качество измельчения частиц до 2 см повысилось до 38,6%, а у серийного составило 30,2 %, что на 8,4% меньше.

Установлено, что работа машины при скоростях режущих элементов ротора ботводробителя в пределах 35-38 м/сек., является вполне удовлетворительной как по качеству измельчения, так и по чистоте уборки.

5. Годовой экономический эффект от внедрения четырехрядного ботводробителя БД-4М составляет 19195 руб. при годовой нагрузке машины 200 часов.

Рекомендации производству

Использование модернизированного ротора ботводробителя с переменным диаметром резания и шарнирными режущими элементами позволит повысить производительность картофелеуборочной техники, улучшить качество дробления ботвы и уборку ботвы в междурядьях.

Рекомендации по обоснованию основных геометрических и кинематических параметров модернизированного ротора ботводробителя могут быть использованы в КБ, заводах-изготовителях сельскохозяйственной техники и хозяйствах АПК.

Перспективы дальнейшей разработки темы

В дальнейшей перспективе необходимо продолжить работу в направлении совершенствования качества измельчения ботвы с целью повышения производительности картофелеуборочной техники.

Основные положения диссертации отражены: В изданиях, рекомендованных ВАК РФ:

- 1. Абрамов Ю.Н. Динамика ротора с шарнирными ножами [Текст]/М.Б. Угланов, О.П. Иванкина, Ю.Н. Абрамов // «Механизация и электрификация» №1-2012. С.10-11.
- 2. Абрамов Ю. Н. Лабораторно-полевые исследования модернизированной ботвоуборочной машины БД-4М [Текст]/М.Б.Угланов, О.П. Иванкина, Ю.Н. Абрамов, А.С. Попов, Д.Н. Бышов //Научный журнал КубГАУ, [Электронный ресурс]. Краснодар: КубГАУ, 2012, №78(04). С. 403-412.
- 3. Абрамов Ю.Н. Исследование модернизированного ботводробителя БД-4м с шарнирными ножами[Текст] / М.Б. Угланов, Ю.Н. Абрамов, А.Н. Бачурин, Д.Н. Бышов// Политематический сетевой электронный научный журнал Кубанского гос. аграрного универ. (Научн. журн. КУбГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2017, №04(128). С. 200-213.
- 4. Абрамов Ю.Н. Экспериментальное определение усилия среза единичного стебля картофельной ботвы [Текст]//«Вестник РГАТУ». Рязань: 2019, №2(42). С. 69-74.

Патенты РФ

- 5. Патент Российской Федерации № 160763. МПК A01D 23/02. Ботводробитель[Текст] / Абрамов Ю.Н., Бышов Д.Н., Угланов М.Б., Иванкина О.П., Липина Т.В. заявитель и патентообладатель ФГБОУ ВО РГАТУ-2015141238/13, заявл. 28.09.2015; опубл. 27.03.2016, Бюл. № 9, 11 с.: ил.
- 6. Патент Российской Федерации № 162404. МПК A01D 23/02./ A01D 33/06.Ботводробитель[Текст] / Абрамов Ю.Н., Бышов Д.Н., УглановМ.Б.,Рязанцев А.И., Орешкина М.В., Иванкина О.П., Липина Т.В. заявитель и патентообладатель ФГБОУ ВО РГАТУ- 2015143586/13,заявл. 12.10.2015; опубл. 10.06.2016, Бюл. № 16, 11 с.: ил.
- 7. Патент Российской Федерации № 186794. МПК A01D 23/02./ A01D 33/06.Ботводробитель[Текст] / Абрамов Ю.Н., Бышов Д.Н., Угланов М.Б., Липин В.Д. заявитель и патентообладатель ФГБОУ ВО РГАТУ-2018132752,заявл. 13.09.2018; опубл. 04.02.2019, Бюл. № 4, 5 с.: ил.

В других изданиях:

8. Абрамов Ю.Н. Ротор ботвоуборочной машины с переменным диаметром резания [Текст] / М.Б. Угланов, Ю.Н. Абрамов, О.П. Иванкина, А.С. Попов, Н.М. Воронкин, Е.В. Саликов, В.М. Соколин // Сборник научных работ студентов Рязанского государственного агротехнологического университета

имени П.А. Костычева Φ ГБОУ ВПО РГАТУ П.А. Костычева. Рязань,2011. С. 232-235.

- 9. Абрамов Ю.Н. Экспериментальное определение основных параметров ножей модернизированной ботвоудаляющей машины БД-4М [Текст] / М.Б. Угланов, О.П. Иванкина, Ю.Н. Абрамов, А.С. Попов, Т.С. Ткач // Сборник научных трудов по материалам международной научно-практической конференции «Инновационные технологии и средства механизации в растениеводстве и животноводстве» Рязань, 2011. С. 90-93.
- 10. Абрамов Ю.Н. Динамика шарнирного режущего элемента ботвоуборочной машины в поле центробежных сил [Текст] /Ю.Н. Абрамов //Сб. научных трудов по материалам научно-практической конференции. РГАТУ им. Костычева. 2011. С. 88-90.
- 11. Абрамов Ю.Н. Исследование удельной работы среза и усилия среза единичного стебля картофельной ботвы [Текст] /М.Б. Угланов, Ю.Н. Абрамов, Ω . Π . Иванкина// Сборник научных «Проблемы трудов механизации агрохимического обеспечения сельского хозяйства». ГНУ ВНИМС Россельхозакадемии. Рязань, 2013. №4С. 153-158.
- 12. Абрамов Ю.Н. Экспериментальное исследование моментов инерции ножей модернизированного ботводробителя БД-4М [Текст] / М.Б. Угланов, Ю.Н. Абрамов, А.С. Попов, О.А. Онищенко // Сборник научных трудов по материалам научно-практической конференции «Приоритетные направления научно-технологического развития агропромышленного комплекса России». РГАТУ. 2018. С 9-13.
- 13. Абрамов Ю.Н. Моделирование работы ротора ботводробительной машины с шарнирными ножами [Текст] / Ю.Н. Абрамов, Д.Н. Бышов, М.Б. Угланов, Ю.А. Юдаев // Сборник научных трудов по материалам национальной научно-практической конференции «Тенденции инженерно-технологического развития агропромышленного комплекса». РГАТУ, 2019. С. 8-12.

Бумага офсетная. Гарнитура Times. Печать лазерная
Усл. печ. л. 1. Тираж 100 экз. Заказ № 1437
подписано в печать 23.10.2019 г.
Федеральное государственное бюджетное образовательное учреждение
высшего образования
«Рязанский государственный агротехнологический университет
имени П. А. Костычева»
390044, г. Рязань, ул. Костычева, 1
Отпечатано в издательстве учебной литературы
и учебно-методических пособий
ФГБОУ ВО РГАТУ
390044, г. Рязань, ул. Костычева, 1